Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS).
نویسندگان
چکیده
The use of plants for phytoextraction of heavy metals from contaminated soil is limited by the ability of the plants to grow on these soils and take up the target metals, as well as by the availability of the metals for plant uptake in the soil solution. The hypotheses of this study were that the growth-promoting phytohormone auxin (indole-3-acetic acid, IAA) can alleviate toxic effects of metals on plants and increase metal phytoextraction in combination with the biodegradable chelating agent ethylene diamine disuccinic acid (EDDS). To test these hypotheses we performed two sets of experiments with sunflowers (Helianthusannuus L.) in hydroponic solution. In the first set of experiments, five IAA concentrations (0, 10(-12), 10(-11), 10(-10), 10(-9)M) were applied in combination with Pb (2.5 microM) or Zn (15 microM). In the second set of experiments we applied combinations of IAA (0 or 10(-10)M) and EDDS (0 or 500 microM) to Pb or Zn-stressed sunflowers. Root and shoot growth of metal-stressed plants were most effectively increased with 10(-10)M IAA, and also the extraction of both metals was significantly increased at this treatment level. IAA reduced the negative metal effects, such as reduced shoot and root dry weight, root length, root volume and root surface area. EDDS significantly decreased metal uptake by the plants, thus reducing metal stress and promoting plant growth. The combined application of IAA with EDDS significantly increased Zn uptake in comparison to EDDS only treated plants. The experiments indicate that IAA can alleviate toxic effects of Pb and Zn on plant root and shoot growth and can in combination with chelants such as EDDS increase the phytoextraction potential of these plants.
منابع مشابه
Effect of ethylene diamine tetra acetic acid chelator in the presence of chromium on growth and some physiological characteristics of sunflower.
Chromium is a heavy metal toxic for plants that due extensive industrial applications over the last decade, has become a serious environmental pollution. On the other hand, chelator dissolution and absorption of metal by the plant increase and their use in phytoremediation is important. The aim of this study was to evaluate the effect of different concentrations of chromium and ethylene diamine...
متن کاملBioproduction of Indole Acetic Acid by Rhizobium Strains Isolated from Root Nodules of Green Manure Crop, Sesbania sesban (L.) Merr.
Twenty six Rhizobium strains were isolated from root nodules of Sesbania sesban (L.) Merr. collected from different regions of Andhra Pradesh. All the 26 Rhizobium strains produced indole acetic acid (IAA), but maximum amount was produced by only five strains in yeast extract mannitol (YEM) medium supplemented with L-tryptophan. The strains were found to elaborate maximum IAA when fed with 2.5...
متن کاملInactivity of Oxidation Products of Indole-3-acetic Acid on Ethylene Production in Mung Bean Hypocotyls.
The suggestion that indole-3-acetic acid (IAA)-stimulated ethylene production is associated with oxidative degradation of IAA and is mediated by 3-methyleneoxindole (MOI) has been tested in mung bean (Phaseolus aureus Roxb.) hypocotyl segments. While IAA actively stimulated ethylene production, MOI and indole-3-aldehyde, the major products of IAA oxidation, were inactive. Tissues treated with a...
متن کاملDoes ethylene mediate root growth inhibition by indole-3-acetic Acid?
The effects of ethylene and of indole-3-acetic acid (IAA) on growth of excised pea root sections have been compared under a variety of conditions. After 16 hours treatment the inhibitory action of IAA is fully reversible on transfer of the root sections to IAA-free solutions. In contrast, inhibition by ethylene is almost totally irreversible. IAA inhibits growth from zero time; ethylene is gene...
متن کاملCharacterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.)
Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 150 bacterial isolates belonging to Bacillus, Pseudomonas, Azotobacter and Rhizobium were isolated from different rhizospheric soil of chick pea in the vicinity of Allahabad. These test isolates were bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 80 8 شماره
صفحات -
تاریخ انتشار 2010